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1 
Introduction
The PAD (Phase and Amplitude Detector) was designed to digitize high speed analog input data with large dynamic range. Because of its high speed and high resolution processing capability, it may be useful to applications beyond measuring phase and amplitude of RF signals and klystron beam voltages. For this reason, there is a subtitle to this document. It is the PAD User’s Manual and it is a how-to manual for a 4 channel fast ADC. Note that there is an optional add-on available that attaches to the QSPI port on the PAD for reading 8 slow, 24-bit analog signals.

In addition to the material in this section, the following resources also describe the PAD hardware:

· ADC Board 4Ch Notes
· LTC2208 to Arcturus uC5282 Interface
1.1 PAD overview
The digitizer used is the Linear Technologies LTC2208.  It was the first 16 bit digitizer chip on the market capable of running at 119MHz, it is specified to run up to 130MHz.  Initially a 2 channel board was to be built for the RF system, but the BPM requirements pushed the design to 4 channels.

The PAD clock is run at 102MHz which is 4 times the IF frequency.  This makes down conversion to DC multiplication by sines and cosines of multiples of 90 degrees, or ones and zeros.  The LTC2208 has a built in dither DAC circuit which varies the location along the ADC transfer function that the signal is digitized at.  In measuring low noise RF signals, especially CW signals digitized at a harmonic of the RF, nonlinearities in the ADC transfer function could show up as noise or errors in the measurements which do not average out.  By adding in and then digitally subtracting out this dithered signal, the nonlinearities in the ADC transfer function can be averaged out.

For each channel, the 16 bit digitized signal from the LTC2208 is clocked into a 64k sample FIFO.  Commercial FIFOs are available which store up to 256k samples in the same package.  The data is then read from the FIFO into the Arcturus Coldfire uCDIMM.  A CPLD is used to handle triggering, resetting the FIFO, interfacing the Coldfire processor to the 4 FIFOs, and interrupting the Coldfire processor.

A block diagram of this board is shown in Figure 1 and the preproduction version in Figure 2.
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Figure 1 PAD block diagram
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Figure 2 Preproduction PAD Board

1.2 
PAD Features

4 Chan - 130MSPS 16 bit ADCs LTC2208 - Data clocked into 64k Sample FIFOs

1 buffered clock input to CPLD

1 buffered trigger input to CPLD 

2 unbuffered coax I/O from CPLD

3 digital I/O from CPLD

4 interrupts to uCdimm5282

Ethernet Port RJ45 connector

2nd Ethernet port using SMSC LAN9118 Ethernet Controller

1 COM Port to 9 pin D connector

1 COM Port to header

I2C Port to header

QSPI 4 wire Serial port with 4 chip selects to header

12 bit General Purpose I/O to header

6 10bit mux analog in or 4 digital I/O and 2 digital Outs to header

1.3 
PAD  tests

A low noise 25.5MHz signal was generated by dividing down 2856MHz.  The 25.5MHz was split and half quadrupled to 102MHz.  The 102MHz was used for the clock input and the 25.5MHz was used as a signal input to the 4 channel ADC board.  The power levels for the 102MHz was +20dBm and +3.6dBm for the 25.5MHz.  The signal level is about -6dBFS (Full Scale) of the ADC.  Four 65k points of data sets were taken with the signal moved from channel to channel.  For each data set, the FFT for each channel is shown in Appendix A.  Channel to channel cross talk and signal to noise ratios (SNR) are measured for each data set.

The SNR is better than 63dB on all four channels as measured.  If scaled to the ADC full scale this would be 69dBFS.  It looks like the signal may have noise levels limiting the measurement, since it looks like the noise floor is raised in the signal channel from -79dB to about -70dB.  If this is the case the board may be able to achieve 79dBFS SNRs.  There is also the possibly that the board layout and/or power supply connections contributes to this raised noise floor.  Further study will be done although the board will work as is for the RF system.

Channel to Channel cross talk is in all cases lower than -100dB at 25.5MHz.
1.4 Slow ADC Board
The slow ADC board uses a Burr-Brown ADS1218, 8 channel, 24 bit, ADC.  The data is read from the ADC through the QSPI port of the control board.  The 8 analog channels are fed out through 2 RJ45 jacks.  The board is shown in Figure 3.
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Figure 3 Slow ADC board

The ADS1218 is used with the following factory presets:


Most Significant Bit transferred first


Buffer Enabled


Internal Reference 2.5V


Speed fmod = fosc/128


Positive Ain = Ch0 Negative Ain = Ch1


Burnout Current Source disabled


PGA Gain = 1


IDACs Off 


Digital I/O inputs


Decimation Register = 0780h = 1920


Format = Bipolar


Settling mode = auto


Flash Writing disabled


Offset = 000000h


FS Reg = 679024h

In this mode we expect to get over 20 effective bits.

The board has biasing for the AD590 temperature measuring device.  The transfer function for this device is shown in figure ???, which gives 298.2uA + 1uA/degC.  The 24bit ADC is reading the voltage across a 1.4k ohm resistor.  With 20 effective bits over 2.5volt range the effective LSB is 2.4uV.  1uA/degC into 1.4k ohms is 1.4mV/degC.  The effective temperature resolution of this device is 2e-3degC.
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Figure 4 AD590 Transfer Function

2 Arcturus uCdimm Coldfire setup
The PAD processor is an Arcturus uCdimm Coldfire. It runs the RTEMS operating system, version 4.7.0 and EPICS, version 3.14.8.2.
The setup described here assumes that you have already programmed the flash with the rtems.exe image. 

Upon power up, if you connect to the COM1 serial port, you will see either the B$ prompt or:
uCbootloader 1.8.0r8

(c) Copyright 2001-2004 Arcturus Networks Inc.

All Rights Reserved.

CACHE on

Autoboot in 5 seconds. <esc> to abort...
If the latter, press <esc> key to get to the B$ prompt

Type help to see all possible commands.

Type printenv to set current settings.

Set params to match your network setup using syntax setenv <attribute> < value>.

If it isn’t already set, add setenv AUTOBOOT 5 to enable autobooting after 5 seconds

Here is sample printenv output:

B$ printenv

FACTORY=Arcturus Networks Inc.

REVISION=uC5282 Rev 1.0 4MB External Flash

SERIAL=X445F83BA-01B06

CONSOLE=ttyS0

KERNEL=0:linux.bin

KERNEL_ARGS=root=/dev/rom0

HWADDR0=00:06:3B:00:6B:06

FW_VERSION=180008

_0=10000000:400000:RW

RAMIMAGE=yes

CACHE=on

GATEWAY=134.79.219.1
NETMASK=255.255.252.0
AUTOBOOT=5
IPADDR0=134.79.219.30
INIT=134.79.19.148:/afs/slac:g/lcls/epics/ioc/iocBoot/iocpad/st-280.cmd
The parameters up to RAMIMAGE are unmodifiable. You can change anything else and add your own. To remove a parameter you no longer want set it to nothing (ie. carriage return). 

Set the network configuration parameters GATEWAY, NETMASK and IPADDR0 up

for your system. 

Set INIT to the IP address of the boot server, followed by the nfsMount point, followed by the path and name of the startup script. In the example, the directory /afs/slac maps to

the mountpoint, /home, and the path starting with g/lcls/… is located below this point.

Once boot sequence is finished, typing nfsMountsShow() at the Cexp prompt, gives:

Cexp>nfsMountsShow()

Currently Mounted NFS:

6871.1086@134.79.219.11:/home/dayle/padData on /data

134.79.19.148:/afs/slac on /home
0x00000000 (0)

The other mountpoint that is reported, is used when data needs to be written to a server for analysis. If you want to use the PAD to gather full 64K sample waveforms, you are

going to need a server that lets you nfsMount it for write. This is discussed more in discussion of startup script contents in ??
3 EPICS startup script

Here is an example startup script with highlights and notes added.

## PAD RTEMS startup script for klystron 21-1 PAD_KLY app

s# Set some abbreviations
ld    = cexpModuleLoad

unld  = cexpModuleUnload

ld("bin/pad.obj")  # in the same dir as where st.cmd is, there is a bin dir (or sym link) 

                             # with pad.obj in it
## nfsMount the filesystem you can write the output to
## To avoid changing and recompiling the code, name the mountpoint “/data”

## To set up for CALIBRATIONs, make a dir called cal under /data
## To set up for NON-LINEARITY test, make 4 dirs called zero, one, two, three 

## under /data
## Syntax:  nfsMount("[uid.gid@]hostip", "path on host", "local mountpoint")

nfsMount("6871.1086@134.79.219.11","/home/dayle/padData","/data")
## Set common environment variables. eg. EPICS_TS_NTP_INET and PORTs

cexpsh("../../../config/epicsEnvSetDev")
# Override or add more env var here if you need to
epicsEnvSet("EPICS_CA_ADDR_LIST","134.79.219.32")

epicsEnvSet("EPICS_CA_AUTO_ADDR_LIST","NO")

## Set app-specific environment variable for the PAD. This is needed if you want to 
## send the entire 64K waveform PVs across Channel Access
epicsEnvSet ("EPICS_CA_MAX_ARRAY_BYTES", "600000")
## Register all support components

dbLoadDatabase("dbd/pad.dbd")

pad_registerRecordDeviceDriver(pdbbase)

## Load record instances

## The template loaded here was built by the Makefile in the Db dir of padApp

## It invokes a script called buildtemplate which uses pad.template and 

## padK211.substitutions to build padK211.template. Basically, it’s just setting up 

## the PRIM and LOCA fields you want to use to make your instance of this app unique
dbLoadTemplate("db/padK211.template")

## These flags are read by the software to decide how much output to write.
## 1: writes FATAL errors

## 2: writes ERRORs and FATAL errors

## 3: writes WARNINGs and ERRORs and FATAL errors

## 4: writes INFO and …

## Setting all the flags to 4 produces too much output when the records are running,

## but you can set them to 4 just for the iocInit() and then set them lower after that.

devLongoutPadFlag=2

devLonginPadFlag=2

devWaveformPadFlag=2

devMbboPadFlag=2

devBoPadFlag=2

drvPadFlag=4

devBoPadFlag=4

iocInit()

## Force scalar waveforms to read (once)
## Note: the PRIM and LOCA have to match what was loaded in db template
dbpf("PAD:K211:1:CH0_SCALAR_WF.PROC","1")

dbpf("PAD:K211:1:CH1_SCALAR_WF.PROC","1")

dbpf("PAD:K211:1:CH2_SCALAR_WF.PROC","1")

dbpf("PAD:K211:1:CH3_SCALAR_WF.PROC","1")

##  If you don’t have the slow ADC board attached to the QSPI, but you load the db 

##  template as is, you WANT to uncomment these lines so that these records never 

##  process
#dbpf("PAD:K211:1:CH0.SCAN", "Passive")

#dbpf("PAD:K211:1:CH1.SCAN", "Passive")

#dbpf("PAD:K211:1:CH2.SCAN", "Passive")

#dbpf("PAD:K211:1:CH3.SCAN", "Passive")

#dbpf("PAD:K211:1:CH4.SCAN", "Passive")

#dbpf("PAD:K211:1:CH5.SCAN", "Passive")

#dbpf("PAD:K211:1:CH6.SCAN", "Passive")

#dbpf("PAD:K211:1:CH7.SCAN", "Passive")

## drvPadFlag manages a lot of debug print statements. These are subsections of the 

## driver so that you can turn debug level high on a portion of the code. Eg. if you ## aren’t getting interrupts, try setting drvPadIntrFlag=4 here to get more info 
## dumped out about interrupts

drvPadCfgFlag=1

drvPadScalFlag=1

drvPadIntrFlag=1

## Override what's set for the offset to the start of the data here

## padSetSampleOffset(channel, sample, n) usage: 
##          sample is the sample number (0 for most, can be 1 if beam phasing cavity)

##          n is the number of 16 bit words to read to reach the start of the sample

##          IMPORTANT: the code always adds 3 to the offset specified by the user.

##          This is because it takes 4 clock cycles to get the first data in the FIFO

##          memory to appear at the output buffer of the FIFO.
## NOTE: there are only 4 channels (0-3), but since they are used in two modes:

## RUNNING and CALIBRATING, the same 4 channels are numbered 4-7 when

## CALIBRATING. It means you can set up the sample offset for each channel ## for RUNNING independently of the offset you want to CALIBRATING.
dbpf("PAD:K211:1:CH0_OFST","0")

dbpf("PAD:K211:1:CH1_OFST","0")

dbpf("PAD:K211:1:CH2_OFST","0")

dbpf("PAD:K211:1:CH3_OFST","0")

dbpf("PAD:K211:1:CH4_OFST","0")

dbpf("PAD:K211:1:CH5_OFST","0")

dbpf("PAD:K211:1:CH6_OFST","0")

dbpf("PAD:K211:1:CH7_OFST","0")

## Override what's set for the size of the data here

## padSetSampleSize(channel, sample, n) usage: 
##          sample is the sample number (0 for most, can be 1 if beam phasing cavity)
##          n must be a multiple of 4 since

##          data in quadruples of (Q1,I2,Q3,I4) read

##          (see comments in drvPad.c for more info)
## NOTE: there are only 4 channels (0-3), but since they are used in two modes:

## RUNNING and CALIBRATING, the same 4 channels are numbered 4-7 when

## CALIBRATING. It means you can set up the sample size for each channel 
## for RUNNING independently of the size you want to CALIBRATING.
dbpf("PAD:K211:1:CH0_SIZE","512")

dbpf("PAD:K211:1:CH1_SIZE","512")

dbpf("PAD:K211:1:CH2_SIZE","512")

dbpf("PAD:K211:1:CH3_SIZE","512")

dbpf("PAD:K211:1:CH4_SIZE","65536")

dbpf("PAD:K211:1:CH5_SIZE","65536")

dbpf("PAD:K211:1:CH6_SIZE","65536")

dbpf("PAD:K211:1:CH7_SIZE","65536")

## The stem to start all data files with if you ever call padDumpDataToFile

## This is not used in normal CALIBRATING or NON-LINEARITY routines

padSetDataFileStem("dayle")          # Format is "<stem><secPastEpoch>.dat"

## For attaching from server gdb app

## rtems_gdb_start(0,0)

## Start any sequence programs. Note: RTEMS Cexp syntax

seq(&sncpad,"PRIM=PAD,LOCA=K211,UNIT=1")
4 EPICS source code
To build it:

· at SLAC, you can get padApp source tree via cvs checkout padApp if $CVSROOT is set to /afs/slac/g/lcls/cvs.
· from outside SLAC, you can request a tarball of padApp from dayle@slac.stanford.edu or grab the 10/1/2006 version from PAD
Gmake for PROD_IOC target: RTEMS-uC5282 and PROD_HOST target: linux-x86.
If you take the pad.obj currently built, you will get 4 channels of the RF WF algorithm. Changing what is running in each channel is beyond the scope of today’s version of the document. 

Some comments on the CFLAGS in src/Makefile:

· define USING_QSPI if you have the 8 channel slow ADC board attached

· define ONE of the PAD_xxx flags based on the application you want to run. Use PAD_GEN for 4 channels of RF WF algorithm
5 EPICS database

As described in the startup script example, the PRIM and LOCA fields of the records for the template are filled in by what you put in a .substitutions file. 

Steps:

· decide on what you want PRIM and LOCA to be

· copy an existing .substitutions file and name it for your app

· edit this file for your PRIM and LOCA values

· add your .substitutions file to the Db/Makefile

· gmake 

· modify the st.cmd script to load the resulting template

Here is a list of the PVs for one PAD, where PRIM = PAD and LOCA = K211:

Table 1 PAD Process Variables  

            Legend
	QSPI
	RF WF-2


	PAD PVs

	PAD:K211:1:CH0

	PAD:K211:1:CH1

	PAD:K211:1:CH2

	PAD:K211:1:CH3

	PAD:K211:1:CH4

	PAD:K211:1:CH5

	PAD:K211:1:CH6

	PAD:K211:1:CH7

	PAD:K211:1:INTR_CTRL

	PAD:K211:1:SOFT_TRIG

	PAD:K211:1:CH0_AVG0

	PAD:K211:1:CH0_AVG02

	PAD:K211:1:CH0_AVG1

	PAD:K211:1:CH0_AVG12

	PAD:K211:1:CH0_BI

	PAD:K211:1:CH0_BQ

	PAD:K211:1:CH0_NUM_READ

	PAD:K211:1:CH0_OFST_MON

	PAD:K211:1:CH0_S2_OF_M

	PAD:K211:1:CH0_S2_SZ_M

	PAD:K211:1:CH0_SIZE_MON

	PAD:K211:1:CH0_S_AVG0

	PAD:K211:1:CH0_S_AVG1

	PAD:K211:1:CH0_S_AVGI2

	PAD:K211:1:CH0_S_AVGQ2

	PAD:K211:1:CH0_S_BI

	PAD:K211:1:CH0_S_BQ

	PAD:K211:1:CH1_AVG0

	PAD:K211:1:CH1_AVG1

	PAD:K211:1:CH1_AVGI2

	PAD:K211:1:CH1_AVGQ2

	PAD:K211:1:CH1_BI

	PAD:K211:1:CH1_BQ

	PAD:K211:1:CH1_NUM_READ

	PAD:K211:1:CH1_OFST_MON

	PAD:K211:1:CH1_S2_OF_M

	PAD:K211:1:CH1_S2_SZ_M

	PAD:K211:1:CH1_SIZE_MON

	PAD:K211:1:CH1_S_AVG0

	PAD:K211:1:CH1_S_AVG1

	PAD:K211:1:CH1_S_AVGI2

	PAD:K211:1:CH1_S_AVGQ2

	PAD:K211:1:CH1_S_BI

	PAD:K211:1:CH1_S_BQ

	PAD:K211:1:CH2_AVG0

	PAD:K211:1:CH2_AVG1

	PAD:K211:1:CH2_NUM_READ

	PAD:K211:1:CH2_OFST_MON

	PAD:K211:1:CH2_SIZE_MON

	PAD:K211:1:CH2_S_AVG0

	PAD:K211:1:CH2_S_AVG1

	PAD:K211:1:CH3_AVG0

	PAD:K211:1:CH3_AVG1

	PAD:K211:1:CH3_NUM_READ

	PAD:K211:1:CH3_OFST_MON

	PAD:K211:1:CH3_SIZE_MON

	PAD:K211:1:CH3_S_AVG0

	PAD:K211:1:CH3_S_AVG1

	PAD:K211:1:NUM_INTR

	PAD:K211:1:NUM_OVERFL_I

	PAD:K211:1:NUM_OVERFL_Q

	PAD:K211:1:NUM_READ2

	PAD:K211:1:NUM_SCANIO

	PAD:K211:1:S_X1

	PAD:K211:1:S_X2

	PAD:K211:1:CH0_OFST

	PAD:K211:1:CH0_S2_OFST

	PAD:K211:1:CH0_S2_SZ

	PAD:K211:1:CH0_SIZE

	PAD:K211:1:CH1_OFST

	PAD:K211:1:CH1_S2_OFST

	PAD:K211:1:CH1_S2_SZ

	PAD:K211:1:CH1_SIZE

	PAD:K211:1:CH2_OFST

	PAD:K211:1:CH2_SIZE

	PAD:K211:1:CH3_OFST

	PAD:K211:1:CH3_SIZE

	PAD:K211:1:CH4_OFST

	PAD:K211:1:CH4_SIZE

	PAD:K211:1:CH5_OFST

	PAD:K211:1:CH5_SIZE

	PAD:K211:1:CH6_OFST

	PAD:K211:1:CH6_SIZE

	PAD:K211:1:CH7_OFST

	PAD:K211:1:CH7_SIZE

	PAD:K211:1:CALIB_CTRL

	PAD:K211:1:STATE

	PAD:K211:1:CH0_RAW_WF

	PAD:K211:1:CH0_RAW_WF2

	PAD:K211:1:CH0_SCALAR_WF

	PAD:K211:1:CH0_S_PRC_WF

	PAD:K211:1:CH0_S_RAW_WF

	PAD:K211:1:CH0_S_R_WF2

	PAD:K211:1:CH1_RAW_WF

	PAD:K211:1:CH1_RAW_WF2

	PAD:K211:1:CH1_SCALAR_WF

	PAD:K211:1:CH1_S_PRC_WF

	PAD:K211:1:CH1_S_RAW_WF

	PAD:K211:1:CH1_S_R_WF2

	PAD:K211:1:CH2_RAW_WF

	PAD:K211:1:CH2_SCALAR_WF

	PAD:K211:1:CH2_S_PRC_WF

	PAD:K211:1:CH2_S_RAW_WF

	PAD:K211:1:CH3_RAW_WF

	PAD:K211:1:CH3_SCALAR_WF

	PAD:K211:1:CH3_S_PRC_WF

	PAD:K211:1:CH3_S_RAW_WF

	PAD:K211:1:CH4_RAW_WF

	PAD:K211:1:CH5_RAW_WF

	PAD:K211:1:CH6_RAW_WF

	PAD:K211:1:CH7_RAW_WF


6 EPICS GUIs

There are some GUIs for the PAD in the padApp’s edm directory. For LLRF, we have about 5 different ways we use the PADs. The GUIs here shown some of the different uses.
The same PRIM and LOCA values that you dreamed up in 5 need to be passed to the GUI. I use a shell script to launch the GUI so that it can remember the PRIM and LOCA for me. An example script is:
[noric01] /afs/slac/g/lcls/epics/ioc/padApp/edm > more gen

#!/bin/bash

. /afs/slac/g/lcls/epics/ioc/padApp/edm/env.bash

edm -m "PRIM=PAD,UNIT=1,LOCA=K211" -x /afs/slac/g/lcls/epics/ioc/padApp/edm/gen.edl&
where env.bash is:
[noric01] /afs/slac/g/lcls/epics/ioc/padApp/edm > more env.bash

#export EPICS_CA_AUTO_ADDR_LIST=NO (may or may not need)
#export EPICS_CA_ADDR_LIST=134.79.59.255 (may or may not need)
export EPICS_CA_MAX_ARRAY_BYTES=600000 # to display big waveforms
export EPICS_CA_REPEATER_PORT=5067

export EPICS_CA_SERVER_PORT=5066

Starting the GUI with the script, gen, brings up the edm panel shown in the section 7.
7 Running
When you power up the PAD and either type go at the B$ prompt, or use AUTOBOOT (see 2) to avoid typing go, the PAD goes through a startup sequence and then puts itself into RUNNING mode. If you are connected to the serial port, you will see:

CACHE on

Autoboot in 5 seconds. <esc> to abort...

Booting

Copy...Done

go! 0x40000

Welcome to RTEMS GeSys

This system $Name: RTEMS_2006_08_11 $ was built on 20060821PDT17:00:48

$Id: init.c,v 1.41 2006/08/21 23:44:40 guest Exp $

Installing TIOCGWINSZ line discipline: ok.

To skip initialization, press a key now...

No ifcfg argument; using 1st interface after loopback...

Configuring 'fs1' from boot environment parameters...

fs1 134.79.219.30/255.255.252.0

gateway: 134.79.219.1

fs1: Ethernet address: 00:06:3b:00:6b:06

This is RTEMS-RPCIOD Release $Name: RTEMS_2006_08_11 $

($Id: rpcio.c,v 1.37 2006/07/11 03:05:11 strauman Exp $)

Till Straumann, Stanford/SLAC/SSRL 2002

See LICENSE file for licensing info

This is RTEMS-NFS Release $Name: RTEMS_2006_08_11 $

($Id: nfs.c,v 1.42 2005/11/17 22:18:34 strauman Exp $)

Till Straumann, Stanford/SLAC/SSRL 2002

See LICENSE file for licensing info

Trying symfile 'BUILTIN', system script '(NONE)'

Trying user script '134.79.19.148:/afs/slac:g/lcls/epics/ioc/iocBoot/iocpad/st-2

80.cmd':

Trying to mount 134.79.19.148:/afs/slac on /home

RPCIO: server '134.79.19.148' not responding - still trying

Change Dir to '/home/g/lcls/epics/ioc/iocBoot/iocpad/'

Type 'cexpsh.help()' for help (no quotes)

'st-280.cmd':

  ## PAD RTEMS startup script for klystron 21-1 PAD_KLY app

  # Set some abbreviations

  ld    = cexpModuleLoad

0x000479f0 (293360)

  unld  = cexpModuleUnload

0x00047530 (292144)

  ld("bin/pad.obj") # run the latest compiled object

0x003bcf84 (3919748)

  # nfsMount the filesystem for output data

  #This configuration works while the PAD is on IFZ 134.79.21[6-9] subnet

  # nfsMount("[uid.gid@]hostip", "path on host", "local mountpoint")

  nfsMount("6871.1086@134.79.219.11","/home/dayle/padData","/data")

Trying to mount 6871.1086@134.79.219.11:/home/dayle/padData on /data

0x00000000 (0)

  ## Set common environment variables. eg. EPICS_TS_NTP_INET and PORTs

  cexpsh("../../../config/epicsEnvSetDev")

'../../../config/epicsEnvSetDev':

  # use the DEV proxy IP address

  epicsEnvSet ("SLC_PROXY_IP",      "134.79.51.39")

0x00000000 (0)

  # use the SLAC NTP server

  epicsEnvSet ("EPICS_TS_NTP_INET", "134.79.16.9")

0x00000000 (0)

  # use the MCCDEV CA ports

  epicsEnvSet ("EPICS_CA_SERVER_PORT",   "5066")

0x00000000 (0)

  epicsEnvSet ("EPICS_CA_REPEATER_PORT", "5067")

0x00000000 (0)

  # start the iocLogClient so messages are sent to iocLogAndFwdServer

  epicsEnvSet ("EPICS_IOC_LOG_PORT", "7004")

0x00000000 (0)

  epicsEnvSet ("EPICS_IOC_LOG_INET", "134.79.219.11")

0x00000000 (0)

  iocLogInit()

log client: connected to log server at "134.79.219.11:7004"

0x00000000 (0)

0x00000000 (0)

  # PAD needs to be able to see VME

  epicsEnvSet("EPICS_CA_ADDR_LIST","134.79.219.32")

0x00000000 (0)

  epicsEnvSet("EPICS_CA_AUTO_ADDR_LIST","NO")

0x00000000 (0)

  ## Set app-specific environment variable for the PAD

  epicsEnvSet ("EPICS_CA_MAX_ARRAY_BYTES", "600000")

0x00000000 (0)

  #ALT: setenv("EPICS_CA_MAX_ARRAY_BYTES","20000000",1)

  ## Register all support components

  dbLoadDatabase("dbd/pad.dbd")

0x00000000 (0)

  pad_registerRecordDeviceDriver(pdbbase)

0x00000000 (0)

  ## Load record instances

  dbLoadTemplate("db/padK211.template")

0x00000000 (0)

  ## Set to 2 so that we see errors

  devLongoutPadFlag=2

0x00000002 (2)

  devLonginPadFlag=2

0x00000002 (2)

  devWaveformPadFlag=2

0x00000002 (2)

  devMbboPadFlag=2

0x00000002 (2)

  devBoPadFlag=2

0x00000002 (2)

  drvPadFlag=4

0x00000004 (4)

  devBoPadFlag=4

0x00000004 (4)

  iocInit()

Starting iocInit

############################################################################

###  EPICS IOC CORE built on Feb 20 2006

###  EPICS R3.14.8.2 $R3-14-8-2$ $2006/01/06 15:55:13$

############################################################################

padInitialise: hardware initialisation in progress...

padInitialise: IRQ1 before: 0

padInitialise: IRQ3 before: 0

padInitialise: IRQ4 before: 0

padInitialise: IRQ5 before: 0

padInitialise: IRQ1 after: 2

padInitialise: IRQ3 after: 8

padInitialise: IRQ4 after: 16

padInitialise: IRQ5 after: 32

padInitialise: csar1 has addr 0x4000008c and contents 0xffff8000

padInitialise: csar1_actual has addr 0x80000000 and contents 0x00000000

padInitialise: cscr1 has addr 0x40000096 and contents 0x00000580

padInitialise: csmr1 has addr 0x40000090 and contents 0x00000103

ch 0: address to scalar is 0x005d1a64

ch 1: address to scalar is 0x005c194c

ch 2: address to scalar is 0x005d19e2

ch 3: address to scalar is 0x005e1b0e

padInitialise: watchdog timer queue initialised

padInitialise: created event sem 436273479

padInitialise: data acquistion task id is 167837714

padInitialise: intr vector, 42, connected to ISR

init_bo: PAD:K211:1:INTR_CTRL: has initial value: 0

init_bo: PAD:K211:1:INTR_CTRL: has parm: 0

init_bo: PAD:K211:1:INTR_CTRL's dpvt has routine: 0

init_bo: PAD:K211:1:SOFT_TRIG: has initial value: 0

init_bo: PAD:K211:1:SOFT_TRIG: has parm: 1

init_bo: PAD:K211:1:SOFT_TRIG's dpvt has routine: 1

iocInit: All initialization complete

0x00000000 (0)

  # force scalar waveforms to read (once)

  dbpf("PAD:K211:1:CH0_SCALAR_WF.PROC","1")

DBR_UCHAR:          1         0x1

0x00000000 (0)

  dbpf("PAD:K211:1:CH1_SCALAR_WF.PROC","1")

DBR_UCHAR:          1         0x1

0x00000000 (0)

  dbpf("PAD:K211:1:CH2_SCALAR_WF.PROC","1")

DBR_UCHAR:          1         0x1

0x00000000 (0)

  dbpf("PAD:K211:1:CH3_SCALAR_WF.PROC","1")

DBR_UCHAR:          1         0x1

0x00000000 (0)

  # if testing by hand, stop some stuff from processing

  #dbpf("PAD:K211:1:CH0.SCAN", "Passive")

  #dbpf("PAD:K211:1:CH1.SCAN", "Passive")

  #dbpf("PAD:K211:1:CH2.SCAN", "Passive")

  #dbpf("PAD:K211:1:CH3.SCAN", "Passive")

  #dbpf("PAD:K211:1:CH4.SCAN", "Passive")

  #dbpf("PAD:K211:1:CH5.SCAN", "Passive")

  #dbpf("PAD:K211:1:CH6.SCAN", "Passive")

  #dbpf("PAD:K211:1:CH7.SCAN", "Passive")

  drvPadCfgFlag=1

0x00000001 (1)

  drvPadScalFlag=1

0x00000001 (1)

  drvPadIntrFlag=1

0x00000001 (1)

  #override what's set for the offset to the start of the data here

  #padSetSampleOffset(channel, sample, n) usage: sample is the sample number (0

for most, can be 1 if BPH)

  #                                     n is the number of 16 bit words to read

  #                                     after first 3 clock cycless.

  dbpf("PAD:K211:1:CH0_OFST","0")

DBR_LONG:           0         0x0

0x00000000 (0)

  dbpf("PAD:K211:1:CH1_OFST","0")

DBR_LONG:           0         0x0

0x00000000 (0)

  dbpf("PAD:K211:1:CH2_OFST","0")

DBR_LONG:           0         0x0

0x00000000 (0)

  dbpf("PAD:K211:1:CH3_OFST","0")

DBR_LONG:           0         0x0

0x00000000 (0)

  dbpf("PAD:K211:1:CH4_OFST","0")

DBR_LONG:           0         0x0

0x00000000 (0)

  dbpf("PAD:K211:1:CH5_OFST","0")

DBR_LONG:           0         0x0

0x00000000 (0)

  dbpf("PAD:K211:1:CH6_OFST","0")

DBR_LONG:           0         0x0

0x00000000 (0)

  dbpf("PAD:K211:1:CH7_OFST","0")

DBR_LONG:           0         0x0

0x00000000 (0)

  #override what's set for the size of the data here

  #padSetSampleSize(channel, sample, n) usage: sample is the sample number (0 fo

r most, can be 1 if BPH)

  #                                   n must be a multiple of 4 since

  #                                   data in quadruples of (Q1,I2,Q3,I4) read

  #                                   (see comments in drvPad.c for more info)

  dbpf("PAD:K211:1:CH0_SIZE","512")

DBR_LONG:           512       0x200

0x00000000 (0)

  dbpf("PAD:K211:1:CH1_SIZE","512")

DBR_LONG:           512       0x200

0x00000000 (0)

  dbpf("PAD:K211:1:CH2_SIZE","512")

DBR_LONG:           512       0x200

0x00000000 (0)

  dbpf("PAD:K211:1:CH3_SIZE","512")

DBR_LONG:           512       0x200

0x00000000 (0)

  dbpf("PAD:K211:1:CH4_SIZE","65536")

DBR_LONG:           65536     0x10000

0x00000000 (0)

  dbpf("PAD:K211:1:CH5_SIZE","65536")

DBR_LONG:           65536     0x10000

0x00000000 (0)

  dbpf("PAD:K211:1:CH6_SIZE","65536")

DBR_LONG:           65536     0x10000

0x00000000 (0)

  dbpf("PAD:K211:1:CH7_SIZE","65536")

DBR_LONG:           65536     0x10000

0x00000000 (0)

  padSetDataFileStem("dayle")   # The stem to start all data files with

padSetDataFileStem: setting filename to stem 'dayle'

0x00000000 (0)

                                  # Format is "<stem><secPastEpoch>.dat"

  ## Start any sequence programs. Note: RTEMS Cexp syntax

  # Skip state machine for nonlin test

  seq(&sncpad,"PRIM=PAD,LOCA=K211,UNIT=1")

SEQ Version 2.0.11: Thu Jun  1 18:25:31 2006

Spawning state program "sncpad", thread 0xa010023: "sncpad"

0x0a010023 (167837731)

sncpad: init

Type 'cexpsh.help()' for help (no quotes)

Cexp>sncpad: operation state set to start-up

sncpad: startup

sncpad: startup complete

write_bo: PAD:K211:1:INTR_CTRL: enabling interrupts

sncpad: running. interrupts enabled
If you have setup a host to be able to see the PAD’s PVs and you run the shell script to launch the GUI (see 6), your system will resemble Figure 5. Note that the PVs shown are a copy of the operational PVs that have been slowed down to an update rate of 1 Hz. These values are just to have something to look at; they are not part of the local feedback loop. 
Here are some things to look for to check that your system is running properly (assuming that there were no errors in any step of your startup script):
· all PVs are attached; i.e. no disconnects showing

· the interrupt counter at the bottom is increasing in increments of the number of triggers you are sending in 1 second (i.e. if you are using 30 Hz triggers, it’s increasing by 30 every update.

· the 4 waveforms shown in the xy graph are updating every second

· the number of Scan I/O requests resembles the same number as the interrupt counter

· the number of overflows in either I or Q or both is small or zero
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Figure 6 PAD in RUNNING mode
8 How to calibrate

Calibrating here refers to a mode of data acquisition in which all four FIFOs write their 64K 16-bit word raw data to a file on an nfsMounted filesystem. You invoke this by pressing the CALIB RQST button as shown in Figure 6. When you press the button, the COM port will show something like:
Cexp>sncpad: calibration requested

sncpad: calling calibration subroutine

padCalibration: disabling hardware triggers for the calibration

padCalibration: calling padCalReadSignal

padCalReadSignal: giving CPLD soft trigger to reset FIFOs

padCalReadSignal: initiating chip select read at 0x80000000 for 65539 words

padCalReadSignal: guts of read for channel 0

padCalReadSignal: number of words read is: 65536

padCalReadSignal: initiating chip select read at 0x80000000 for 65539 words

padCalReadSignal: guts of read for channel 1

padCalReadSignal: number of words read is: 65536

padCalReadSignal: initiating chip select read at 0x80000000 for 65539 words

padCalReadSignal: guts of read for channel 2

padCalReadSignal: number of words read is: 65536

padCalReadSignal: initiating chip select read at 0x80000000 for 65539 words

padCalReadSignal: guts of read for channel 3

padCalReadSignal: number of words read is: 65536

padCalibration: calling padDumpCalDataToFile

padCalDumpDataToFile: writing channel 0's raw data (65536 shorts) to file '/data

/cal/0.dat'

As listed in the output, your calibration data gets written to the nfsMount point, /data, in the subdirectory cal. Four files are written there (only the first is listed above) and they are named: 0.dat, 1.dat, 2.dat, 3.dat.
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Figure 7 PAD in CALIBRATING mode
9 How to do a non-linearity test

As of 29sep2006 there is no GUI access to the non-linearity test, so type padNonlin(n) at the Cexp> prompt. n is the number of 64K sample sets * 4 channels that you want. Eg. padNonlin(1000) would write 1000 64K sample files for each of the 4 channels. Files are named 0.dat, 1.dat, … n.dat and are placed in /data/zero, /data/one, /data/two, /data/three where /data is the nfsMount point set up in the startup script. Note that it takes ~30 seconds for one 64K sample file transfer (!). 

To run the histogram program, you need to run the padHist executable built (only) for the host in padApp/src. Its usage looks like:

padHist usage: [histogram size] [number of files] [dirname]

Example invocation to make a 65536 bin histogram from 1000 samples of channel 0 data written to /data/zero 
padHist usage: 65536  1000  zero
The output is written to a file called hist.dat in [dirname]
8 Troubleshooting

There are lots of routines available to be run at the Cexp prompt. Start with padReport() to get an overview. The full list is:

padBphReadSignal()

padCalReadSignal()

padCalibration()

padCauseChipSelect()

padClearChannel()

padCounts()

padDacqTask()

padDisableIntr()

padDumpAvgToFile()

padDumpCalDataToFile()

padDumpChannel()

padDumpDataToFile()

padDumpEppdr()

padDumpNonLinDataToFile()

padDumpProcessedSignal()

padDumpSignal()

padEnableIntr()

padGenReadSignal()

padGetAverageI()

padGetAverageQ()

padGetCalibrationControl()

padGetDataFileName()

padGetDataFileStem()

padGetInterceptI()

padGetInterceptQ()

padGetIntrCount()

padGetIoScanPvt()

padGetNumShortsRead()

padGetNumShortsToRead()

padGetOperationMode()

padGetOverflowICount()

padGetSampleOffset()

padGetX()

padGetYIntercept()

padISR()

padNonlin()

padQSPIEg()

padQSPIReadData()

padQSPIReport()
padQSPISetIODir()

padQSPISetMUX()

padQSPIWrite1Byte()

padQSPIWriteIO()

padRefReadSignal()

padReport()

padResetFifo()

padSetCalibrationControl()

padSetDataFileName()

padSetDataFileStem()

padSetOperationMode()

padSetSampleOffset()

padSetSampleSize()

padSimpReadSignal()

padSoftTrigger()

padToggleIRQ5()

padTurnOffLED()

padTurnOnLED()

pad_registerRecordDeviceDriver()
There isn’t time now to describe each routine in detail, but padSoftTrigger() can be used to get the CPLD to reset the FIFOs
9 Details of triggered data acquisition by generic LLRF control subsystem 
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Figure 8 Example of generic LLRF control system instance
Upon receipt of a timing trigger, the PAD’s FIFOs are filled. There are 4 channels of interlaced
 I and Q values filling each of the four 64K sample  FIFOs. The following steps are done for each of the 4 channels: A sample of points is read out. The number of points read depends on the operational mode of the PAD. An embedded processor on board the PAD applies a 1-D correction to the raw, interlaced I and Q data and computes independent sums and counts for each I and Q during the read. The resulting average I and Q values are sent over private Ethernet to the VME system. 
Upon receipt of these values, the CPU in the VME crate converts I and Q to phase (arctan I/Q) and amplitude (sqrt(I^2 +Q^2)) and applies any correction that has been calculated from either the local feedback loop or from the global beam-based fast feedback. Still in the VME CPU, the corrected values are converted back to I and Q and then sent to the PAC which converts them into a waveform of  I and Q and loads them into an FPGA. The sequence of steps described thus far must finish within one operational period (1/30 Hz for commissioning, 1/120 Hz for operations). 
Upon receipt of the next timing trigger, the PAC, FPGA held, waveform is sent out.

10  Overview of PAD software requirements

The readout of all 4 channels and the processing must complete within 2 ms after the timing trigger.

The slow ADC values must be scaled, offset and updated at a rate of 1 Hz.

The digital data processing requirements for the beam phasing cavity are described on pages 6-10 of Phasing Cavity_ESD_04_24_06.pdf
10.1 PAD algorithms

The generic algorithm for the calculation of the average I and Q for a waveform was introduced in 0. A sample of the 512k 16-bit integers is read in, corrected, and independently summed over all I and all Q values in the sample. The averages are sent to the VME system. This algorithm is identified as “RF WF”.  In general, “RF WF” is used where phase and amplitude corrections are needed.  The sample size for RF devices ranges from 4 points in the Tcav to 356 points in a SLEDed RF station.
However, for the RF reference distribution, the standard deviation of the signal is also needed. The algorithm for the RF reference distribution is called “AVG + STD”. It appends, onto the first algorithm, a second loop through the sample to determine σ². The standard deviation, σ, will give an indication of the noise level in the reference system since it is a continuous wave, CW, system and not a pulsed system
.  The longer the data set, the lower the frequency of noise can be measured by σ.

Next is the algorithm used by the beam phasing cavity, called “RF WF2”. As shown in [image: image8.png]258y
——

—_
—

Time

Measured Measured
Data Point 1 Data Point 2

Calculated Beam
Phase at Beam Time





Figure 8
, there are two regions of interest in the FIFOs, i.e. two samples, each with its own size and offset into the data. These samples are read in and corrected and the average I and average Q for each sample sent to the VME IOC for processing.  The average phase is calculated for each point.  From the two points and the equation for a line the intercept at beam time is determined.  This is the beam phase.  The slope of the line is scaled to the cavity frequency.  
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Figure 9 Calculation of freqency and phase from a line through 2 points
The PADs situated near the klystrons in the gallery can use a channel to send a single variable to the VME, i.e. no interlacing. This algorithm is called “WF”. The raw data is corrected, but without interlacing, there is only one sum and average to determine.  This channel is used to measure scalar signals, such as klystron beam voltage.
The operational mode of each PAD in the LLRF control system can change between CALIBRATING and RUNNING. When CALIBRATING, the PADs behave differently. An algorithm called “IQ CAL” is used during CALIBRATING. In “IQ CAL”, no summing is done. The entire 64k sample dataset is sent to the VME where it can be used by high-level apps to determine the calibration of the IQ modulator.  In this mode the PAC will put out a circle in IQ space. The PAD will read in this IQ circle and

high levels apps can determine offsets, eccentricity, and tilt in the circle.

Corrections will be sent back to the PAC calibration parameters.

10.2 Slow DAC inputs on the PAD

The queued serial port interface (QSPI) on the PAD’s Acturus uCdimm 5282 processor
 is used to send the 8 channels of the ADS1218 24-bit ADC
 integer data (listed in Table 1) to the CPU. The channels are polled for updates; there is no hardware interrupt. These analog signals are used for diagnostics. They include RF structure temperatures, RF power levels and power supply voltages.
Table 2 PAD Slow ADC Signals

	PAD Slow ADC Signals
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	

	PAD Name
	Chan1
	Chan2
	Chan3
	Chan4
	Chan5
	Chan6
	Chan7
	Chan8

	RF Distribution
	Signal Name
	LO Power
	Local Plate T
	ADC BRD T
	Power Supply
	RefA T
	RefB T
	RefC T
	RefD T

	
	
	
	
	
	
	
	
	
	

	
	Algorithm
	Gain  + Offset
	Gain + Offset
	Gain + Offset
	Gain + Offset
	Gain + Offset
	Gain + Offset
	Gain + Offset
	Gain + Offset


10.3 PAD Software design 

10.3.1 Goals

i. Minimize the amount of time spent in the driver’s interrupt service routine. 

ii. Minimize the time spent reading data.

iii. It is required to send each FIFO three read clocks (perform three read cycles) before valid data appears at the output of the FIFO.
iv. Take care of data type, FIFOs contain 16-bit integers and endianness across hardware. 

v. Decouple the driver from the device support. Make all the device support run standalone driver routines, so that, EPICS does not have to be compiled in and so that every driver routine could be run at the command prompt to set and get values. 

10.3.2 Approach

i. When a hardware interrupt is received, increment a counter and flag that new data is available to read, using an event semaphore. Use another task (thread) to read the data from the FIFOs and clear the flag.

ii. To reach the region of interest, read without storing the data. Store the data from the region of interest.
iii. Before reading a sample, add 3 to the specified offset so that the real data will be at the right place. The exception is sample 2 of the “RF WF2” algorithm described in 2.2
iv. Wrap data read/write actions with Till’s basicIoOps utilities.

Instead of putting a hardware address to memory-mapped I/O in the INP or OUT field of the EPCIS record as described in section 2.1 “Hardware Addresses”   in http://www.aps.anl.gov/epics/EpicsDocumentation/AppDevManuals/RecordRef/Recordref-5.html, the INP and OUT fields are used to specify the driver subroutine to be called during record processing.  Here is an example: the PAD DTYP device support for longin record init routine parse the inp structure for the index, channel and sample. This is stored in the device private structure for this record instance. The read routine uses these fields to execute the correct driver subroutine with the correct parameters.

11  High level applications for PAD testing
11.1
Lab tests

     Cross talk, SNR, Noise floor

The PAD will be set up with a 102MHz clock.  A 25.5MHz signal, -1dBFS, locked to the clock, will be used to connect to channels 0 to 3, one at a time and four readings of 64k samples from each channel taken.  Non-signal inputs will be terminated with 50ohm loads.  FFTs will be done on each of the 16, 64k sample, sets.  The FFT will not require windowing since the signal is a subharmonic of the clock.  Any DC offset will be measured and then removed before the FFT.

In each of the four data sets, the following will be analyzed by doing an FFT on each of the 4 channels:

· Cross talk from the signal channel to the other 3 channels will be taken from the sum of the 2 25.5MHz signal lines on each of the 3 non-signal channels and compared the 25.5MHz signal level on the channel with the signal.

· Noise floor on all three channels will be recorded by subtracting out the 25.5MHz point and the 51MHz point integrating over 51MHz, to get Noise level -3dB, and dividing by 51MHz, to get SSB noise floor.

· Signal level will be taken as the sum of the two 25.5MHz lines in the FFT.

· Second harmonic content will be taken as the 51MHz line.

Items recorded for each channel will be Signal level, Channel to channel cross talk, Noise Floor, and noise level. 

In the time domain the I, Q, -I, and -Q values will have averages and standard deviations taken and recorded.

11.2 Linearity

The linearity will be measured by a sine wave histogram test.  All four channels of the board can be done at the same time.  The data set size will need to be between 2M and 64M points depending on the level to which we want to measure the nonlinearities.  

An asynchronous, wrt the 102MHz clock, low noise sine wave between 1MHz and 25.5MHz, at about full scale, will be split 4 ways and used to drive each channel.  A detailed plan for this will be worked out.  The effect of creating a histogram from multiple data sets needs to be evaluated.  
Appendix A PAD Measurements
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A low noise 25.5MHz signal was generated by dividing down 2856MHz.  The 25.5MHz was split and half quadrupled to 102MHz.  The 102MHz was used for the clock input and the 25.5MHz was used as a signal input to the 4 channel ADC board.  The power levels for the 102MHz was +20dBm and +3.6dBm for the 25.5MHz.  The signal level is about -6dBFS (Full Scale) of the ADC.  Four 65k points of data sets were taken with the signal moved from channel to channel.  For each data set the FFT for each channel is shown below.  Channel to channel cross talk and signal to noise ratios (SNR) are measured for each data set.

Summary

The SNR is better than 63dB on all four channels as measured.  If scaled to the ADC full scale this would be 69dBFS.  It looks like the signal may have noise levels limiting the measurement, since it looks like the noise floor is raised in the signal channel from -79dB to about -70dB.  If this is the case the board may be able to achieve 79dBFS SNRs.  There is also the possibly that the board layout and/or power supply connections contributes to this raised noise floor.  Further study will be done although the board will work as is for the RF system.

Channel to Channel cross talk is in all cases better than -100dB at 25.5MHz.

Data set 1 : 3.6dBm into Channel 0
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Channel 0 data: Signal = -7.1dB  Noise Level = -72.1dB
Channel 1 data: Signal = -112dB  Noise Level = -79.3dB
Channel 2 data: Signal = -114dB  Noise Level = -79.3dB
Channel 3 data: Signal = -111dB  Noise Level = -79.2dB
Integrated Noise Levels

The below plot shows the integrated noise levels of both the signal, channel 0, with the signal removed, red, and the adjacent channel, channel 1 in the same data set.
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The plot shows an overall increase in noise of channel 0, which could be due to the signal having a higher noise level.  The sharp increase between 35MHz and 40MHz can also be seen as an increase in the noise floor at these frequencies in the spectral plot for channel 0.
Data set 2 : 3.6dBm into Channel 1
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Channel 0 data: Signal = -106dB  Noise Level = -79.3dB
Channel 1 data: Signal = -7.2dB  Noise Level = -70.6dB
Channel 2 data: Signal = -109dB  Noise Level = -79.3dB
Channel 3 data: Signal = -114dB  Noise Level = -79.2dB
Data set 3 : 3.6dBm into Channel 2
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Channel 0 data: Signal = -107dB  Noise Level = -79.2dB
Channel 1 data: Signal = -111dB  Noise Level = -79.3dB
Channel 2 data: Signal = -7.1dB  Noise Level = -70.4dB
Channel 3 data: Signal = -102dB  Noise Level = -79.1dB
Data set 4 : 3.6dBm into Channel 3
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Channel 0 data: Signal = -110dB  Noise Level = -79.3dB
Channel 1 data: Signal = -121dB  Noise Level = -79.4dB
Channel 2 data: Signal = -121dB  Noise Level = -79.3dB
Channel 3 data: Signal = -7.1dB  Noise Level = -70.5dB

























































� Interlaced I and Q data: RF is at 2856 MHz. There is no digitizer that runs this fast.


So work at IF (intermediate frequency) of 25.5 MHz and choose to "digitally downmix" (taking the sine and cosine) to the baseband frequency of DC (0 MHz). By choosing


an ADC clock of 102 MHz, there are 4 points to each IF cycle. They are п/2 apart, so taking the sine and cosine has the result that:


0      sin(0)=0; Q=0	       cos(0)=1; I=I


п/2   sin(п/2)=1; Q=Q        cos(п/2)=0; I=0 


п      sin(п)=0, Q=0            cos(п)=-1; I=-I


3п/2 sin(3 п /2)=-1; Q=-Q cos(3п/2)=0; I=0





Since Q is non-zero only when I is zero, and vice versa, the two 


variables can be stored in a single array, in alternating positions





What is stored in "scalar" looks like: [ 1, 1, -1, -1, ... ] and maps to


the Qs and Is as:                      [ Q1, I2, Q3, I4, ... ] where


I1, Q2, I3 and Q4 are all zero.  The scalar vector will also hold weighting functions, once determined, which will relate the measurement along the RF pulse to the affect the it has on beam energy gain.  What is desired here is to get the best possible estimate of the average phase and amplitude the beam sees as is passes through a structure.   


� In a pulsed system, the phase and amplitude are changing rapidly and σ is not as useful.


� See � HYPERLINK "http://www.slac.stanford.edu/grp/lcls/controls/global/standards/hardware/MCF5282UM.pdf chapter 22" ��http://www.slac.stanford.edu/grp/lcls/controls/global/standards/hardware/MCF5282UM.pdf chapter 22�, page 471.


� See � HYPERLINK "http://www.slac.stanford.edu/grp/lcls/controls/global/subsystems/llrf/ads1218.pdf" ��http://www.slac.stanford.edu/grp/lcls/controls/global/subsystems/llrf/ads1218.pdf�
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